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Detector baseline

MARS event generator

Background studies in the calorimeter

Physics and background merging issues

Conclusions
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● Software architecture based on ROOT, VMC & Aliroot
● Uses ROOT as infrastructure

– All ROOT tools are available (I/O, graphics, PROOF, 
data structure, etc)

– Extremely large community of users/developers
● Include an interface to read MARS output to handle 

the MuonCollider background
● Single framework, from generation to reconstruction 

through simulation. Don’t forget analysis!!!

● It is Publicly available at FNAL on ILCSIM since 2006

All the studies presented are performed by 
ILCRoot
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ILCroot: root Infrastructure for Large Collider
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MC Generation   
Energy Deposits in Detector

SDigitization   
Detector response from single particle

Digitization   
Detector response combined

Clusterization Sci and Cer signals   Clusters

Calibration    Recparticles

  Storage   DST

MC Generation   
Energy Deposits in Detector

SDigitization   
Detector response from single particle

Signal Background

hits

sdigits

digits

clusters

esd particles

recparticles jets

Simulation steps in ILCroot:
Calorimeter system
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Detector baseline
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Detector baseline zoom

10°/5°
NoseDual Readout 

Calorimeter

Tracker
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Dual-readout Calorimeter for Collider studies  

 Lead glass + scintillating fibers
 ~1.4° tower aperture angle
  180 cm depth
  ~ 7.5 λint

 depth

  >100 X0 depth
 Fully projective geometry
 Azimuth coverage

   down to ~8.4° (Nozzle)
 Barrel: 16384 towers
 Endcaps: 7222 towers

ADRIANO Calorimeter (FNAL-
INFN Collaboration) is used
for the studies presented here
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 WLS's collect Cerenkov photons 
generated in lead glass (front and 
back readout)

 Generate and transport scintillating 
photons (front and back readout for 
fibers in the core of the tower; only 
back readout for the other fibers)

   Simulation include:
 SiPM with ENF=1.016
 Fiber non-uniformity response = 0.8% 

(scaled from CHORUS)
 Threshold = 3 p.e. (SiPM dark current< 50 

kHz)
 ADC with 14 bits
 Gaussian noise with σ= 1 p.e.

WLS

Detector baseline for these studies

PRESENTLY IN A TEST-BEAM BY T1015 COLLABORATION
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 Simulated 1 MARS event
 Origin of the particles: MDI surface
 Background particles for μ+ and μ- within 25 m and 

beyond 25 m
 Particle in a MARS event ~108, almost all originated 

within 25 m
(See S. Striganov talk for more details)

 Particles from within 25 m have weight ~ 20
 These particles are split using azimuthal symmetry

 Particles from beyond 25 m have weight << 1
 Pick up randomly these particle, taking care the 

integral weight is the same
● This have been done 10 times, then the average 

signal have been used
● Results presented use only background within 25m

Simulating MARS generated event
with ILCroot
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Some simulation details

● Muon Collider particles background
provided by MARS15 at the MDI surface
(black hole surface)

● Particles (Physics and background) 
are tracked in the detector using Geant4

● Dual Readout calorimeter provide the 
measurement of the energy

Event display only 4%
of the full background

Hits in the calorimeter
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Timing and space distributions
of one background event

into the calorimeter
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~80% of the background 
hits is originated within 
foremost 20 cm of the 
calorimeter

Longitudinal energy deposition in Dual-Readout 
calorimeter produced by 1 background event

Longitudinal 
segmentation 

of the 
calorimeter 

could be 
beneficial
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Time distribution of the MuonCollider background

Light propagation in fibers and
lead glass is implemented in ILCroot

Calorimeter is now split in a
forward (20cm) and rear (160 cm) 

section
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Front Section

Rear Section

Peak at ~20 ns

Peak at ~35 ns
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Time distribution of the MuonCollider background
and particles from IP

Physics
(- from IP)

Background energy
 in the range time
 of Physics

Most of physics occurr 
within 7 and 10 ns

Sci signal is developed in fibers
with 2.4 ns decay time

Cerenkov is read directly on LeadGlass
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Sci signal is developed in fibers
Cerenkov is read by WLS

Both with 2.4 ns decay time
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Time distribution of the MuonCollider background
and particles from IP
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Integration time gate for each section

Front Section Rear Section

Scint Cer Scint Cer

conf A 100 ns 100 ns 100 ns 100 ns

conf B 20 ns 15 ns 25 ns 25 ns

conf C 15 ns 6 ns 22 ns 22 ns

● In conf B 95% of the signal
 is integrated

● In conf C 90% of the signal
 is integrated
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1 entry = <1 cell>

Rear Section
Fixed time gate

All calorimeter
Fixed time gate

Front Section
Fixed time gate

Angular distribution of background for different 
integration times
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The background reduction is higher going from 25 to 15 ns  
than going from 100 to 25 ns

Note: the background energy peak is between 20 – 35 ns

conf A
conf B
conf C

conf A
conf B
conf C

conf A
conf B
conf C
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Energy distribution of the
background per tower

in barrel section
for different species

using different time gate
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Background energy distribution per tower in barrel
Calorimeter Front Section; different integration times

neutrons muons gammas

electrons others
With background particles
within 25 m mostly gammas
and neutrons contribute to
energy into the Front Section
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conf A
conf B
conf C
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Background energy distribution per tower in barrel
Calorimeter Rear Section; different integration times

neutrons muons gammas

electrons others
With background particles
within 25 m mostly neutrons
contribute to energy into the
Rear Section
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conf A
conf B
conf C
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Look at the energy distribution
of the background per tower

for different species
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neutrons muons gammas

electrons others

Most of the energy is
in the endcaps originated
by Neutrons
and in the barrel originated
by gammas

Background energy distribution per tower
Calorimeter Front Section Integration time gate conf C
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1 entry = energy of 1 tower
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neutrons muons gammas

electrons others

Most of the energy in
the endcaps is originated
by neutrons

Background energy distribution per tower
Calorimeter Rear Section Integration time gate conf C
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1 entry = energy of 1 tower
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Energy distribution of the
background per tower vs theta

for different species
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Background energy distribution per tower vs theta.
Calorimeter Front Section; Integration time gate conf C

neutrons muons gammas

electrons others

With background particles
within 25 m mostly neutrons
contribute in the endcaps
region and gammas contribute
to energy into barrel
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Background energy distribution per tower vs theta.
Calorimeter Rear Section; Integration time gate conf C

neutrons muons gammas

electrons others
With background particles
within 25 m mostly neutrons
contribute to energy into the 
endcaps regions
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Total energy distribution
of the background per tower
In barrel section [45° - 135°]

and endcap sections [20° - 45°]
And [8° - 20°]
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Background energy distribution per tower
in Front and Rear Section Integration time conf C

Barrel
[45° - 135°]

Middle Endcap
[20° - 45°]

Forward Endcap
[8° - 20°]
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Background energy fluctuation

Energy (GeV) Front Rear

Barrel 5.33±0.54 0.63±0.43

Mid ECap 4.33±0.79 1.20±0.95

Forward ECap 8.31±2.94 11.3±6.8
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Physics and background at a Muon Collider:
some comment

 Jets develop in 16 – 25 towers; mean energy 150 GeV
 Background in barrel Rear Section:

 mean energy 0.6 GeV RMS 0.4 GeV
   Jet energy fluctuation after background pedestal
   cut 1.5 – 2 GeV
 Background in endcap > 20° Rear Section
    mean energy 4 GeV RMS 0.8 GeV
   Jet energy fluctuation after background pedestal
   cut 3 – 4 GeV
 Background in endcap < 20° Rear Section

 mean energy 11 GeV RMS 7 GeV
   Jet energy fluctuation after background pedestal
   cut 28 – 35 GeV
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Merging issues to be addressed

Merging is done from SDigits to Digits (inherited by AliRoot)

For Alice this work fine. In high multiplicity event PbPb ions
they have ~104 particles per event

In a MuonCollider MARS background event there are
~108 particles per event

To be able to simulate a full MuonCollider background event
I split it in ~2x103 subsections

 Using the classic merge technique is time expensive

Different approach can be used: apply filter at hit level, it is
accurate and very efficient.
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Conclusion
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 Accurate study about MuonCollider 
background have been presented
 Mars to ILCroot interface is excellent
 The machinery for full simulations is in 
place and working smoothly
 Below 20° Physics is affected considerably
 More work is need to implement a more 
efficient merging of background and Physics

      V. Di Benedetto Muon Collider 2011 27 June – 01 July

Present detector configuration is OK
More optimization work is needed to reduce the 

background to  a confortable level
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Backup
slides
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Required Computing Resources

 Time and disk space needed to simulate 1 Muon 
Collider background event at hits level.

  Particles with weight 1;
 1 CPU <-> 2400 h
 200 Gb disk space

 Disk space and CPU time can be reduced applying 
filter at hit level.
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